Automatic Amortised Worst-Case Execution Time Analysis

نویسندگان

  • Christoph Armin Herrmann
  • Armelle Bonenfant
  • Kevin Hammond
  • Steffen Jost
  • Hans-Wolfgang Loidl
  • Robert F. Pointon
چکیده

Our research focuses on formally bounded WCET analysis, where we aim to provide absolute guarantees on execution time bounds. In this paper, we describe how amortisation can be used to improve the quality of the results that are obtained from a fully-automatic and formally guaranteed WCET analysis, by delivering analysis results that are parameterised on specific input patterns and which take account of relations between these patterns. We have implemented our approach to give a tool that is capable of predicting execution costs for a typical embedded system development platform, a Renesas board with a Renesas M32C/85U processor. We show that not only is the amortised approach applicable in theory, but that it can be applied automatically to yield good WCET results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Carbon Credits" for Resource-Bounded Computations Using Amortised Analysis

Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revi...

متن کامل

Combining Symbolic Execution and Path Enumeration in Worst-Case Execution Time Analysis

This paper examines the problem of determining bounds on execution time of real-time programs. Execution time estimation is generally useful in real-time software verification phase, but may be used in other phases of the design and execution of real-time programs (scheduling, automatic parallelizing, etc.). This paper is devoted to the worst-case execution time (WCET) analysis. We present a st...

متن کامل

Amortised resource analysis for object-oriented programs

As software systems rise in size and complexity, the need for verifying some of their properties increases. One important property to be verified is the resource usage, i.e. how many resources the program will need for its execution, where resources include execution time, memory, power, etc. Resource usage analysis is important in many areas, in particular embedded systems and cloud computing....

متن کامل

Measurement-Based Worst-Case Execution Time Analysis using Automatic Test-Data Generation

Traditional worst-case execution time (WCET) analysis methods based on static program analysis require a precise timing model of a target processor. The construction of such a timing model is expensive and time consuming. In this paper we present a hybrid WCET analysis framework using runtime measurements together with static program analysis. The novel aspect of this framework is that it uses ...

متن کامل

Fully Dynamic Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case Update Time

We consider the problem of maintaining an approximately maximum (fractional) matching and an approximately minimum vertex cover in a dynamic graph. Starting with the seminal paper by Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. There remains, however, a polynomial gap between the best known worst case update time and the best known amortised u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007